Applications: Material Analysis
Our energy-sensitive spectral X-ray cameras facilitate color radiography images, visualizing different materials within your sample. Our multichannel imaging can be employed for cutting-edge real-time ore quality identification on operational conveyor belts in mines.
Our material-sensitive imaging detectors can be calibrated to exhibit sensitivity toward specific chemical elements or compounds, which can be harnessed for ore quality identification. This confirms the presence of valuable metals, such as copper, iron, or zinc, in ore samples.
This approach offers unique applications in the mining industry. With the time-delayed integration mode (TDI), our cameras can help sort the ore by quality on fast-moving conveyor belts in real time. The TDI mode captures images of moving objects at low radiation intensity levels. The architecture of the detector read-out-chip allows a shift of the pixel matrix along columns. Shifts are synchronous with the object’s movement. TDI mode is used together with multi-energy X-ray imaging.
As part of the European Union Horizont 2020 X-MINE project, a high-resolution, high-speed X-ray camera designed for large scans and conveyor belts was developed and tested under extreme, real-world mining conditions. The ore is sorted right after X-Ray inspection on the conveyor belt moving beneath the camera at speeds of up to 5m/s. This method ensures that only valuable rocks containing significant amounts of ore are processed while the rest of the material is removed from further processing.
The microstructure and the ore decomposition within the inspected sample rock are also visualized. It plays a significant role in proper mineral identification. The rock’s granularity, crystal orientation, and veins can be specified.
This solution is both cost-effective and environmentally friendly, as it reduces the energy and chemicals needed for further ore processing. This approach led to approximately 20% savings in water, chemicals, energy, waste, and overall costs in actual mine conditions.
