Applications

ISS: PROTECTING ASTRONAUTS AT THE INTERNATIONAL SPACE STATION

Applications: Space

As an official dealer for NASA, ADVACAM has supplied the agency with dozens of its radiation monitoring solutions over the past decade. Many of these devices are currently active, contributing significantly to the safety of the ISS systems and its crew.

Smaller and lighter than preceding NASA radiation monitoring devices, systems based on Timepix technology are perfect for space exploration missions. The single-photon counting technology, developed originally for CERN’s Large Hadron Collider, enables NASA to collect data regarding the radiation dosage and the precise location of radiation as it hits the detector. NASA scientists can examine the radiation spectrum within exploration spacecraft, enhancing their understanding of how to safeguard the crew during deep space missions.

The initial testing of the Timepix solution on the ISS started in 2012. Timepix USB Lite Interface devices from the Institute of Experimental and Applied Physics in the Czech Republic were utilized for these tests. Five of these miniaturized detectors, each about the size of a USB drive, have been consistently collecting a stream of data relayed daily to the Mission Control Center at Johnson.

ADVACAM, a spin-off company from the Institute of Experimental and Applied Physics, delivered its first branded device to the ISS in 2017. ADVACAM’s Miniature Particle Tracker (MPT) was installed on the International Space Station to demonstrate its proficiency in determining the directional characteristics of charged particle energy spectra in space.

Subsequently, ADVACAM became an official supplier for NASA. Several other miniaturized MiniPIX Timepix single-photon counting cameras were certified and delivered to orbit in 2019, launched on the Cygnus NG-12 flight. These devices have been installed in ISS modules, including the US Lab, Cupola, Columbus, JPM, Node 1, and Node 3, as part of the Radiation Environment Monitor 2 (REM2).

Moreover, NASA integrated the customized Timepix technology provided by ADVACAM into the Hybrid Electronic Radiation Assessor (HERA).  The flight spare for this launch collected data and conducted a 30-day comprehensive test aboard ISS in March 2019. Later on, the advanced radiation system was deployed on March 2, 2021, and is currently operational on the ISS. Its ultimate purpose, however, is to function on the upcoming Artemis missions to the Moon and beyond.

This animation depicts data from a Radiation Environment Monitor 2 (REM2) in the Destiny Laboratory of the International Space Station. The map on the left side shows the distribution of dose rates over approximately two months from this unit. The space station location corresponding to the data frame on the right is overlayed on top of the dose rate map. The animation updates approximately every minute along the space station trajectory showing high latitudes, South Atlantic Anomaly (SAA), and equatorial areas in the low-Earth orbit radiation environment. The SAA is where the Earth’s inner Van Allen radiation belt comes closest to the Earth’s surface, dipping down to an altitude of 200 kilometers. Video: Courtesy of NASA

Share article