The leading detector technology, which Advacam uses for its products and solutions is based on Medipix hybrid pixel detectors. These devices were developed within international collaboration of universities and research laboratories lead by team at CERN during past 20 years. Advacam team's members have been part of the Medipix Collaboration from it inception and have been contributing to the technology.

Photon Counting Technology

Advacam's imaging cameras are direct conversion single photon counting pixel detectors that represent the cutting edge of current radiation imaging technology. The term “single photon counting” means that every single photon of X-ray radiation detected in individual pixel is processed and counted. The technology brings two major advantages in comparison to the conventional X-ray imaging - high contrast together with sharp images and spectral information of X-rays that allows material specific information to be displayed in colors.

In the direct conversion cameras each pixel of the semiconductor crystal is directly connected to the complex CMOS circuit using a conductive solder bump. In the indirect conversion cameras a scintillation layer is attached on top of a photodiode. The photodiodes manufactured on a simple CMOS circuit that enables fine pixel sizes

Illustrative comparison of a single pixel of a direct conversion and indirect conversion cameras.

The term direct conversion refers to immediate conversion of the X-rays into electric charge within the semiconductor crystal. The principle is contrary to the conventional indirect conversion where the X-rays are first converted into visible light in the scintillation layer that subsequently is converted into electric charge in the photodiodes.

Illustration of the operation principles in a single pixel between the direct and indirect conversion cameras.

The photon counting principle of detection eliminates all other sources of noise that are present in CCD or flat-panel based cameras. This leads to considerably better signal-to-noise ratio and therefore detectability of more details in images. The images sharpness or the actual spatial resolution of the captured image is defined by the electric charge in the CMOS readout. Even thought the pixel size of of the direct converting cameras is larger than that of the conventional indirect conversion cameras, the signal of the detected X-rays is better focused into the pixels. The typical size of a direct conversion pixel ranges from few milli meters to tens of micro meters where Advacam represents the highest pixel density of the current industrial X-ray cameras with 55 um pixel size.

The illustration video describes the differences between conventional indirect conversion, direct conversion charge integrating and photon counting cameras. It summarises the major differences in the captured image quality in terms of spatial resolution, image noise and material discrimination.

The energy sensitivity is as important advancement of the imaging technology as was the colour photography and film. Contrary to regular X-ray imaging cameras, the photon counting cameras can discriminate or even directly measure energy (wavelength) of incoming photons. Since each element of the sample has different X-ray attenuating properties, it is possible to estimate material composition of the sample if the energy of the photons is measured. Tthe spectral sensitivity offers major improvement over the conventional X-ray imaging cameras.

Digital Time Delayed Integration

Digital Time Delayed Integration (DTDI) allows continues scanning of the inspected samples without stitching of individual images that cannot fit into the field of view of the camera. The high quality and resolution image is formed as the sample moves across the field of view of the camera. The scanning speed of the camera or the movement of the sample (for example on a conveyor belt) can be up to tens of meters per second.

Illustration of the DTDI where continues infinite colour X-ray image of moving white piggy banks is captured.