

ADVAPIX

TPX3

Datasheet

Model No.: APXMD3-Xxx170704

APXT3M-Xxx180119

APXT3M-Xxx200128

APXT3M-Xxx201030

General features

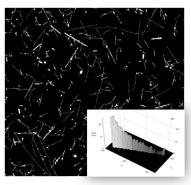


Illustration of single particle sensitivity of Timepix3 device. The tracks of different particles of radiation background (mostly muons and few protons) were recorded in 5 minutes on board of airplane. No noise (clean zero) is seen in dark regions. Inset shows the time profile along one muon track.

The ADVAPIX TPX3 modules were designed with special emphasis to performance and versatility which is often required in a scientific experimental work. They contain a CERN detector Timepix3 for particle tracking and imaging with Si or CdTe sensor. The ADVAPIX TPX3 modules can be used in different configurations: telescope of several layers for better particle tracking and/or side-by-side for larger area coverage. Each module contains one Timepix3 device with fast data readout of more than 38 Mhits per second. A separate USB 3.0 channel for each module assures fast read-out of the whole modular system. The sensor type and thickness is of customer's choice.

The typical and intended applications of ADVAPIX TPX3 include:

- **Spectral X-ray and gamma ray imaging:** X-ray fluorescence imaging, X-ray radiography (low flux), scintigraphy or SPECT, radiography with isotopes.
- Energy dispersive XRD, SAXS or WAXS: Monochromatic X-ray source is NOT needed! Even high energy for thick samples is possible (e.g. 100 keV)!
- Particle tracking and ion beam monitoring: detectors can be used for tracking and tagging of primary particles (e.g. ions) as well as secondary radiation (spallation, fragmentation, recoiled, bremsstrahlung, prompt/delayed decays, neutrons¹ ...).
- **Neutron imaging:** The sensors can be adapted for neutron imaging by deposition of converter layers².

Recording shapes of individual hits together with advanced data processing allows increasing the spatial resolution in some applications to units of microns or even sub-micrometric level (for ions).

Main Features

•	Readout chip type	. Timepix3
•	Pixel size ³	. 55 x 55 μm
•	Sensor resolution	. 256 x 256 pixels
•	Time resolution	. 1,6 ns
•	Power	. External 5 V
•	Sensor material	. 100, 300, 500 μm Si, 1000 μm CdTe
•	Dark current	. none
•	Interface	. USB 3.0 (Super-Speed)
•	Maximum readout speed	.38 million pixels / s
•	Dimensions	. 210 x 94 x 38 mm
•	Weight	. 905 g

¹ ADVAPIX TPX3 is not certified dosimetric device. It serves as the first level indicator and monitor of radiation fields allowing identification of a radiation type. Radiation protection of people cannot be based on measurements of ADVAPIX TPX3.

² Convertors based on ⁶LiF or ¹⁰B₄C for slow neutrons (efficiency up to 4%) or PE for fast neutrons.

 $^{^3}$ 55 x 110 μm at the edges and 110 x 110 μm at the corners

Device parameters

Operating conditions

Symbol	Parameter	Value	Units	Comment
Ta	Operating ambient temperature range ¹	0-50	°C	
Φ	Humidity	< 80	%	Not condensing
IP	IP rating with cover	IP40		
IP	IP rating without cover	IP10		

¹ With temperature stabilization – see the paragraph below.

External temperature stabilization

Temperature stabilization of the device required. Attach the back of the device to a water-cooled plate or to a Peltier module. The temperature should be set to 22 °C.

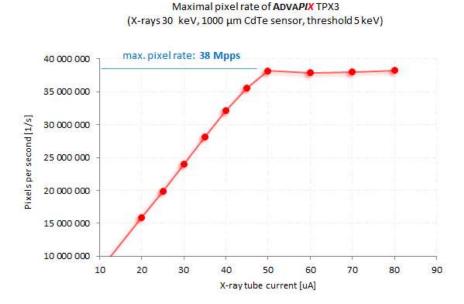
- Intended for dust free indoor use.
- The device will automatically shut down after chip or CPU temperature exceeds 55°C.

Electrical Specification

 T_{dev} = 25 °C, USB voltage V_{CC} = 4,8 V

Symbol	Parameter	Min	Тур	Max	Units	Comment
Vcc	Supply Voltage		5,0	5,5	V	
Icc	Supply Current					
Icc1	Chip active		800	1500	mA	
P1	Power Dissipation			7,5	W	
I/O Conn. Input	t CMOS 2,5 V					
V _{INL}	Voltage Low	-0,3		0,7	V	
V _{INH}	Voltage High	1,7		2,8	V	
I/O Conn. Input	LVDS					
Vin	Voltage Range	0		2,5	V	
VINDIFF	Differential Voltage	250		600	mV	
I/O Conn. +5 V	(pin 2)					
Імах	Maximum current	0		0,5	А	
V _{+5V}	Pin Voltage		4,5		V	V _{CC} - 0,5V
Bias Voltage So	Bias Voltage Source for Sensor Diode					
V _{BIAS}	Bias Voltage	0		±450	V	Polarity is sensor dependent

Performance characteristics of Timepix3

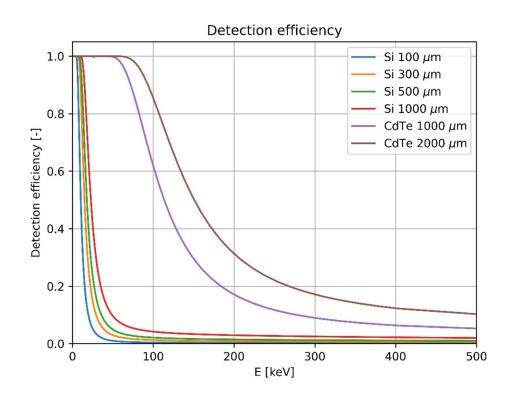

Symbol	Parameter	Min	Тур	Max	Units	Comment
f	Hit-rate			38	MPixels/s	with USB 3.0 cable
	Data rate			2,4	Gbit/s	with USB 3.0 cable
T _{READ}	Frame Readout Time ¹		33		ms	with USB 3.0 cable
dT	Time resolution		1,56		ns	
F _{READ}	Read-out frequency		320		MHz	½ of maximum ROC freq

¹ During Readout time (or Dead time), no signal is collected from the sensor.

Pixel mode hit-rate measurement

The whole detector is exposed to homogenous perpendicular irradiation from X-ray tube operated at 30 kVp with 3 mm Aluminum filter. The measurement type is set to "Pixels" and mode to "ToT+ToA" The following setting must be set before the measurement starts. Uncheck the "ProcessData" and "DummyAcqNegativePolarity" and set value 400 to the field DDBlockSize and value 1000 to the field DDBuffSize in the tab Readout in More Detector Settings dialog which is accessible from the main PIXet Pro window on the right side under the panel Detector Settings. All other parameters are set to factory defaults (as stored in the configuration file delivered with the device). The exposure time is set to 1 s. The data must be read out to the memory. The data are saved to disk after the measurement and later processed. The "Clustering" tool of PIXet Pro is used to analyze measured data where you can replay the data and find the total number of hit pixels.

The number of hit pixels per second is drawn as a function of X-ray tube current searching for saturation.


Sensor parameters

 T_{dev} = 22 °C

Parameter		9	Si .		CdTe		Units	Comment
Thickness	100	300	500	1000 ¹	1000	2000 ¹	μm	
Calibrated energy threshold ²	3,0	3,0	3,0	3,0	5,0	5,0	keV	
Energy resolution in ToT mode (σ @ 60 keV)	1,2 – 2,6	1,3 – 2,7	1,4 – 3,5	1,7 – 3,6	2,8 – 5,4	2,9 – 8,3	keV	Valid for the standard calibration
Energy resolution in ToT mode (σ @ 122 keV)					3,4 – 6,0	4,5 – 9,9	keV	Valid for the standard calibration
Typical detectable energy range for X-rays	3,0 - 60	3,0 - 60		5,0 - 500		keV	See chart below	
Good pixels	> 99,5%	> 99,5%		> 99,5%				
Pixel size ³	55 x 55						μm	

¹Customized product

 $^{^3}$ 55 x 110 μm at the edges and 110 x 110 μm at the corners

² Premium calibration and/or chip class can achieve even better performance. For more information, please contact support@advacam.cz

Basic principles, measurement types and modes

The ionizing radiation particle interacts with the sensor material creating an electric charge. This charge is collected by electric field and brought to pixel preamplifier where it is amplified and shaped forming triangular voltage pulse. The amplitude and duration of this pulse is proportional to energy deposited by particle within the pixel. The situation when the voltage pulse amplitude in particular pixel exceeds preselected threshold value is called "event" or "hit".

Each pixel contains three digital counters (10, 14 and 4 bits). These counters are used differently according to measurement type and mode. There are four different quantities which can be measured and stored in counters of each pixel – these are selected by operational modes.

Operational modes:

Number of events

= number of events (hits) in the pixel during exposure time (this mode is suitable mainly for frame type readout).

Time-over-Threshold (ToT) = number of periods of 40 MHz clock signal (25 ns step) when amplifier output signal stays over the energy threshold. The ToT can be transformed to energy in keV using per-pixel-calibration function. The coefficients for per-pixel-calibration are unique for each pixel and they are stored in configuration file delivered with the device. The energy calibration is valid only for given values of other detector parameters as delivered in configuration file (especially threshold). Time-of-Arrival (ToA) = number of periods of 40 MHz clock signal (25 ns step) from start of exposure till the event is registered by pixel (i.e. pulse in pixel crosses the threshold). The range is 409,6 μs. Additional 16 bits are added in FPGA in readout electronics so that the total range is 26,8 seconds. An additional counter has also been added to perform scans beyond 26,8 seconds.

Fast-Time-of-Arrival (FToA) = time difference between event detection and next clock signal measured with step of 1,5625 ns. Range is 4 bits. The combination of ToA and FToA gives precise time of event detection in nanoseconds using following formula:

Time [ns] = ToA*25 - FToA*1,5625

Measurement types:

Frame type measurement

No data is sent out of device during the exposure time. All measured events are accumulated in counters of pixels. Event counter is incremented, and ToT is integrated into iToT counter for all events. The measured data is read-out after end of exposure time for all pixels with nonzero content. No measurement can be performed during readout process. Measurement types in PIXet Pro: Frames, Integral.

Pixel type measurement

Information about all hit pixels is read-out immediately and continuously during exposure time. If hit rate is below maximal value (see fp in table of Performance characteristics) then there is practically no deadtime. Measurement type in PIXet Pro: Pixels.

Sometimes this mode is referred to as the data-driven mode or the event-based mode.

Combinations of operation modes and measurement types (rarely used cases are shown with gray background):

Туре	Mode	Range	Description
			2 output frames per exposure:
	ToA+ToT	18 bit + 10 bit	ToA = Time of Arrival of first event in pixel, ToA and FToA ¹ combined
	10A+101	10 011 + 10 011	ToT = Time over Threshold, i.e. energy in keV if calibration is loaded
Frames			and switched on
(reading all pixels after	ToA	18 bit	1 output frame:
end of exposure)	TUA	10 011	ToA = Time of Arrival of first event in pixel, ToA and FToA ¹ combined
	Event+iToT		2 output frames per exposure:
		10 bit + 14 bit	Events = number of events in pixel
			iToT = integrated Time over Threshold, i.e. energy in keV if calibration
			is loaded and switched on, for all events in pixel
	ToA+ToT	18 bit + 10 bit	Data stream contains 4 values per pixel per event: Position, ToT, ToA
Pixels	TOATIOT	10 011 + 10 011	and FToA¹ (for data formats .t3*)
(reading only hit pixels	ToA	18 bit	Data stream contains 3 values per pixel per event: Position, ToA and
continuously during	10A	10 DIC	FToA ¹ (for data formats .t3*)
exposure)	Only ToT	10 bit	Data stream contains 2 values per pixel per event: Position and ToT (for
	Offiny 101	10 010	data formats .t3*)

¹ ToA and FToA are combined by software automatically. For Pixel type measurement, if saved as a .t3pa file, ToA and FToA are stored as separate items.

Device description

+5 VDC connector

Main power supply (via standard 5,5/2,1 mm barrel connector). Connect after plugging USB connector.

USB 3.0 connector

USB type micro-B, Standard USB 3.0 Super-Speed.

I/O Digital connector

Signals on I/O Digital connector are used for synchronization purposes. For details see **Synchronization guide for TPX3**. Input pins are **NOT** +5 V compatible. Pin 2 (+5 V) may be used for power of external circuitry. It is taken directly from +5 VDC connector, protected by Schottky diode (0,5 A max) Pin directions (Input/output) are dependent on polarity of pin 9 (Dir Select).

Table for version APXMD3-Xxx170704

Pin	Name	Signal type	Pin	Name	Signal type
1	GND		2	+5 V	
3	Reserved	CMOS 0-2,5 V	4	Reserved	CMOS 0-2,5V
5	Reserved	CMOS 0-2,5 V	6	Reserved	CMOS 0-2,5V
7	NC	-	8	Reserved	CMOS 0-3,3V
9	NC	-	10	Reserved	CMOS 0-3,3V

Table for version APXT3M-Xxx180119

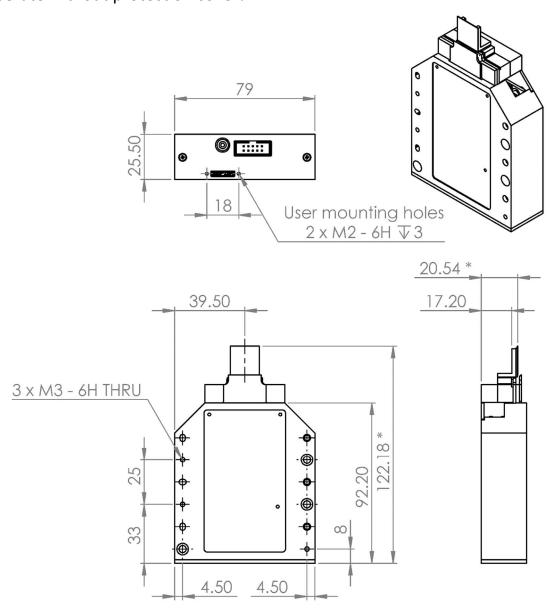
Pin	Name	Signal type	Pin	Name	Signal type
1	GND		2	+5 V	
3	CLK p	LVDS (2,5 V)	4	CLK n	LVDS (2,5 V)
5	E2	CMOS 0-2,5 V	6	E1	CMOS 0-2,5 V
7	Trigger Out	CMOS 0-2,5 V	8	Trigger In	CMOS 0-2,5 V
9	Dir select	CMOS 0-2,5 V	10	GND	

Table for version APXT3M-Xxx200128 & APXT3M-Xxx201030

Pin	Name	Signal type	Pin	Name	Signal type
1	GND		2	+5 V	
3	Master Disable	CMOS 0-2,5 V/5 V	4	CLK n	LVDS (2,5 V)
5	CLK p	LVDS (2,5 V)	6	T0/Sh-sel	CMOS 0-2,5 V
7	Th/Sh p	LVDS (2,5 V)	8	Th/Sh n	LVDS (2,5 V)
9	Ready	CMOS 0-2,5 V	10	T0/Sh-CMOS	CMOS 0-2,5 V

Certificates

ADVA PIX TPX3 has been tested by certification authority (Electrotechnical testing institute EZÚ) according to following standards:

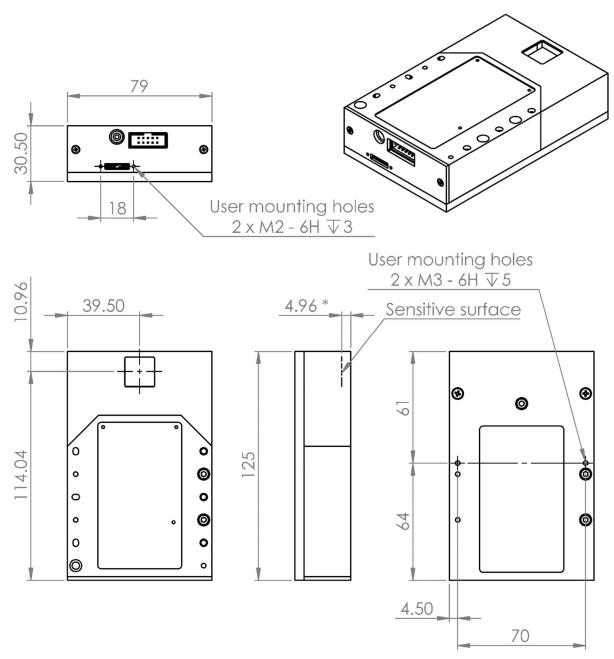

Standard number	Name
EN 61010-1:2010	Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use
EN 61326-1:13	Electrical Equipment for Measurement, Control and Laboratory Use - EMC Requirements

Mechanical dimensions

Without protection cover Do not operate without protection cover!

All dimensions are in mm.

* Sensitive surface distance from bottom of the box is stated for 300 μm sensor thickness.



Extreme care must be taken when removing protecting cover and handling the **ADVAPIX TPX3** without the protecting cover. Warranty does not apply to mechanical damage of the sensor and wirebonds.

With protection cover

All dimensions are in mm.

* Sensitive surface distance from top of the box is stated for 300 μm sensor thickness.

Model number codes

Example:	APX	<u>T3M</u> -	X P	3	XXXX	XXXX
Device name:						
APX – AdvaPIX						
Device modification:						
T3M (or MD3) – Timepix3 Module			Ī			
Sensor type:						
P – Planar silicon			_			
C – CdTe						
Sensor thickness:						
1 – 100 μm						
3 – 300 μm						
5 – 500 μm						
A – 1000 μm						
B – 2000 μm						
Device build version:						

Instructions for safe use

Do not touch the sensor surface!

To avoid malfunction or damage to your **ADVAPIX** TPX3 please observe the following:

- Do not expose to water or moisture.
- Do not disassemble. Wire-bonding connection may be irreversibly damaged.
- Do not insert any object into the sensor window.
- Extreme care must be taken when removing the protecting cover or handling the **ADVAPIX** TPX3 without the protecting cover. Warranty does not apply to mechanical damage of the sensor and wirebonds.
- The protection provided by this product may be impaired if it is used in a manner not described in this document.
- Thermal stabilization of the device is necessary.
- A direct connection to the host device is required for maximum performance. Connecting via a USB hub may negatively affect the performance and stability of the device.

Disposal

Do not dispose these instruments as unsorted municipal waste. Please use separate collection facility to contact the supplier from which the instrument was purchased. Please make sure discarded electrical waste is properly recycled to reduce environment impact.

Release history

Date (YY/MM/DD)	Changes	Changed by
17/11/02	Model number codes added, datasheet version	
18/02/08	Synchronization of 180119 version	
19/04/16	Synchronization voltages corrected	
19/07/22	Major revision: Added intended applications, description of modes and	
19/07/22	types, hit rate measurement.	
19/07/29	EMC certificate numbers added	
19/12/04	Sensor parameters, Detection efficiency	
20/05/19	New version; Mechanical dimensions; Changed Synchronization	
20/11/11	Mounting holes for USB	
22/06/06	Vacuum compatibility; sensor parameters	
23/10/03	Parameters updated	
24/02/15	Datasheet revision	J. Baborák
24/07/02	New graphic style of the document, USB hub warning added	J. Baborák,
24/07/02	New graphic style of the document, OSB hub warning added	P. Bloudek
24/07/22	Minor format changes	J. Baborák

Copyright ©

ADVACAM s.r.o.

U Pergamenky 12 Tel.: +420 608 605 533
Prague 170 00 Email: sales@advacam.com

Czech Republic www.advacam.com

